首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Rational design of large anomalous Nernst effect in Dirac semimetals
发布时间:2023-11-14

Rational design of large anomalous Nernst effect in Dirac semimetals

Panshuo Wang, Zongxiang Hu, Xiaosong Wu & Qihang Liu        
    npj Computational Materials 9: 203(2023)
   doi.org/10.1038/s41524-023-01159-5   
    Published online: 27 October 2023  
   Abstract| Full Text | PDF OPEN  
Abstract: Anomalous Nernst effect generates a transverse voltage perpendicular to the temperature gradient. It has several advantages compared with the longitudinal thermoelectricity for energy conversion, such as decoupling of electronic and thermal transports, higher flexibility, and simpler lateral structure. However, a design principle beyond specific materials systems for obtaining a large anomalous Nernst conductivity (ANC) is still absent. In this work, we theoretically demonstrate that a pair of Dirac nodes under a Zeeman field manifests an odd-distributed, double-peak anomalous Hall conductivity curve with respect to the chemical potential and a compensated carrier feature, leading to an enhanced ANC compared with that of a simple Weyl semimetal with two Weyl nodes. Based on first-principles calculations, we then provide two Dirac semimetal candidates, i.e., Na3Bi and NaTeAu, and show that under a Zeeman field they exhibit a sizable ANC value of 0.4 Am^(-1) K^(-1) and 1.3 Am^(-1) K^(-1), respectively, near the Fermi level. Such approach is also applicable to ferromagnetic materials with intrinsic Zeeman splitting, as exemplified by a hypothetical alloy NaFeTe2Au2, exhibiting an ANC as high as 3.7 Am^(-1) K^(-1) at the Fermi level. Our work provides a design principle with a prototype band structure for enhanced ANC pinning at Fermi level, shedding light on the inverse design of other specific functional materials based on electronic structure.  
摘要: 反常能斯特效应可在垂直温度梯度的方向诱导出横向电压。与纵向热电效应相比,它有多个优点,如电输运和热输运的解耦、更高的灵活性以及更简单的横向器件结构。然而,迄今为止,尚未提出一种通用设计原则,用于实现大的反常能斯特热电导率。在这项研究中,我们从理论上证明了在塞曼场下,一对狄拉克节点会呈现出随化学势变化奇函数分布、具有双峰特征的反常霍尔电导率曲线,以及补偿的载流子特性,从而获得比仅有一对外尔点的外尔半金属更高的反常能斯特热电导率。基于第一性原理计算,我们提供了两个狄拉克半金属的候选材料,即Na3Bi和NaTeAu,在塞曼场下它们在费米能级附近表现出相当大的反常能斯特热电导率(0.4 Am^(-1) K^(-1) 及 1.3 Am^(-1) K^(-1))。这种设计方法还适用于具有本征塞曼劈裂的铁磁材料,例如NaFeTe2Au2合金(3.7 Am^(-1) K^(-1))。我们的研究为费米能级处反常能斯特效应的增强提供了一种电子能带结构设计原则,并为其它特定功能材料基于电子结构的逆向设计提供了启示。  
Editorial Summary  

Rational Design: large ANE, Dirac semimetal

Thermoelectric materials enable the direct conversion of heat into electricity without mechanical components. The anomalous Nernst effect can produce a transverse voltage without any assistance of external magnetic field, further reducing the size of device and enhancing its stability. However, the bottleneck in its application is the thermoelectric conversion efficiency. This study proposes a design principle for enhancing the anomalous Nernst effect pinning at the Fermi level, which differs from the traditional trial-and-error approach for large anomalous Nernst effect materials. Inverse design based on electronic structure can significantly accelerate the discovery of new candidate systems. A team led by Prof. Qihang Liu from Southern University of Science and Technology, China, theoretically demonstrates that under a Zeeman field, a pair of Dirac nodes exhibits an odd-distributed, double-peak anomalous Hall conductivity curve with respect to the chemical potential and a compensated carrier feature. As a result, a 300% enhanced anomalous Nernst conductivity is obtained compared with the simple two-band Weyl semimetal model. Combining the aforementioned band model with first-principles calculations, this study provides two practical candidate materials: the Dirac semimetals Na3Bi and NaTeAu. Under a Zeeman field, their anomalous Nernst conductivity near the Fermi level can reach 0.4 Am^(-1) K^(-1) and 1.3 Am^(-1) K^(-1), respectively. Notably, the anomalous Hall conductivity curve with respect to chemical potential of NaTeAu exhibits a double-peak feature, resulting in a maximum value of anomalous Nernst conductivity near the Fermi level, consistent with the Dirac band model under a Zeeman field. Furthermore, by substituting 50% Na by Fe in NaTeAu, they obtained a ferromagnetic topological material NaFeTe2Au2, with intrinsic Zeeman splitting. It exhibits a large anomalous Nernst conductivity up to 3.7 Am^(-1) K^(-1) near the Fermi level. They also artificially designed a full-Heusler ferromagnetic material, Co2PdGe, which also exhibits a large anomalous Nernst conductivity around the Fermi level (6.2 Am^(-1) K^(-1)). In summary, this research provides a functional materials design approach: first design a specific band structure and then screen materials that meet this electronic structure, which will accelerate the discovery of new candidate materials. 
转热为电的材料:可以被设计出来?            

热电材料可以实现热能和电能的直接转换,无须机械运动部件。反常能斯特热电效应无须外磁场驱动就能产生横向电压,可进一步减小器件的尺寸,提升器件稳定性。然而其热电转换效率却是制约其应用的瓶颈因素。该研究提出了一种费米能级处反常能斯特效应增强的电子能带结构设计原则,不同于传统的试错法来寻找大的反常能斯特效应材料,逆向设计可大大提高新候选体系的发现速度。来自南方科技大学的刘奇航教授团队,从理论上证明了在塞曼场下,一对狄拉克节点会呈现出随化学势变化奇函数分布、具有双峰特征的反常霍尔电导率曲线,以及补偿的载流子特性,从而获得比传统的,仅有一对外尔点的两带外尔半金属模型有300%增强的反常能斯特热电导率。结合能带模型及第一性原理计算,该研究提供了两个实际的候选材料:狄拉克半金属Na3Bi和NaTeAu。在塞曼场下,它们在费米能级附近的反常能斯特热电导率分别可达到0.4 Am^(-1) K^(-1) 和 1.3 Am^(-1) K^(-1)。其中NaTeAu的反常霍尔电导率曲线随化学势变化呈双峰特征,从而在费米能级附近有一个反常能斯特热电导率的极大值,与塞曼场下的狄拉克能带模型相符。进一步地,该研究组通过把NaTeAu中50%的Na替换为Fe,获得了具有塞曼劈裂的本征铁磁拓扑材料NaFeTe2Au2,它在费米能级附近展现出高达3.7 Am^(-1) K^(-1)的反常能斯特热电导率。该研究还设计了一种全哈斯勒铁磁材料Co2PdGe,同样在费米能级附近有高达6.2 Am^(-1) K^(-1)的反常能斯特热电导率。综上,该研究提供了一种功能材料设计思路,首先设计特定的能带结构然后筛选出符合这种电子结构的材料,这将提升新候选材料的发现速度。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050