首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
A physics informed bayesian optimization approach for material design: application to NiTi shape memory alloys
发布时间:2024-02-23

A physics informed bayesian optimization approach for material design: application to NiTi shape memory alloys 

Danial Khatamsaz, Raymond Neuberger, Arunabha M. Roy, Sina Hossein Zadeh, Richard Otis & Raymundo Arróyave 

npj Computational Materials9: 221 (2023).

Editorial Summary

A physics informed bayesian optimization approach

In material design applications, complex computational models and/or experiments are employed to gain a better understanding of the material system or to improve its performance. High-fidelity models, however, often exhibit high non-linearity, effectively behaving as black-boxes that hinder intuitive understanding beyond input-output correlations. At the same time, experiments are inherently black-box in nature as intermediate linkages between inputs (e.g. chemistry, processing protocols) and outputs (i.e. properties or performance metrics) tend to be accounted for only in an implicit manner. There is thus a growing need for novel data-efficient approaches that can effectively address these challenges while ensuring that the discovery and/or design process remains comprehensible and effective. Bayesian Optimization (BO) has gained popularity in materials design due to its ability to work with minimal data. However, many BO-based frameworks predominantly rely on statistical information, in the form of input-output data. In practice, designers often possess knowledge of the underlying physical laws governing a material system. Leveraging this partial information could potentially bolster the optimization process’s efficiency and speed. In this work, Danial Khatamsaz et al. from the Materials Science and Engineering Department, Texas A&M University, proposed a physics-informed BO framework. This framework introduces physics into the Gaussian Process (GP) kernel to explore potential efficiency enhancements in material system design and the discovery of optimal processing parameters. The proposed approach combines the advantages of traditional BO techniques with the benefits of employing known governing equations for physical modeling. By infusing statistical information with theoretical insights, they strengthened the GP’s probabilistic modeling capability, resulting in reduced data dependency and faster convergence to the optimal design. The incorporation of physical knowledge not only improves the performance of BO frameworks, but also allows for a deeper understanding of the underlying physics governing the system, which can lead to more informed and efficient design decisions. The applicability of this approach is showcased through the design of NiTi shape memory alloys, where the optimal processing parameters are identified to maximize the transformation temperature. This work lays a foundation for the application of physics-infused kernel design within the BO framework, opening up new possibilities across various materials science applications.

编辑概述

基于物理信息的贝叶斯优化方法

在材料设计应用中,通常使用复杂的计算模型和/或实验以更好理解材料系统或提高其性能。然而,高保真模型通常呈现出高度的非线性,其行为等效于一个黑盒,这阻碍了输入-输出关联性之外的直观理解。与此同时,实验本质上也是黑盒,这是因为输入(如化学、加工方案)和输出(即性能或性能指标)之间的中间联系往往只能用隐式的方式来解释。因此,人们亟需一种新的数据高效的方法,以有效应对这些挑战,同时保证发现和/或设计过程的可理解性和高效性。贝叶斯优化(BO)由于能够以最小的数据集运行而在材料设计中广受欢迎。然而,许多基于BO的框架主要依赖于输入-输出数据形式的统计信息。实际上,设计者通常掌握支配材料系统的底层物理定律,利用这部分信息可能会提高优化过程的效率和速度。来自德州农工大学材料科学与工程系的Danial Khatamsaz等,提出了一套基于物理信息的BO框架。该框架将物理学引入高斯过程(GP)核,以探索材料系统设计中潜在的效率提升和最优工艺参数。方法结合了传统BO技术的优势,以及使用已知的控制方程进行物理建模的优点。通过向统计信息中注入理论见解,增强了GP的概率建模能力,从而降低了数据依赖性,并更快地收敛到最优设计。物理知识的结合不仅提高了BO框架的性能,而且允许对支配系统的底层物理有更深入的理解,从而做出更明智、更高效的设计决策。研究者通过设计NiTi形状记忆合金,展示了该方法的适用性,确定了最大化转变温度所需的最优工艺参数。这项工作为BO框架中物理注入内核设计的应用奠定了基础,为各种材料科学应用开辟了新的可能性。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050