首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Structure-aware graph neural network based deep transfer learning framework for enhanced predictive analytics on diverse materials datasets
发布时间:2024-02-23

Structure-aware graph neural network based deep transfer learning framework for enhanced predictive analytics on diverse materials datasets

Vishu Gupta, Kamal Choudhary, Brian DeCost, Francesca Tavazza, Carelyn Campbell, Wei-keng Liao, Alok Choudhary & Ankit Agrawal 

npj Computational Materials10: 1 (2024)

Editorial Summary

Structure-aware graph neural network: Enhanced prediction of material properties

Accurate materials property prediction using crystal structure occupies a primary and often critical role in materials science. Upon identification of a candidate material, one has to go through either a series of hands-on experiments or intensive density functional theory calculations which can take hours to days to even months depending on the complexity of the system. Hence, the ability to accurately predict the properties of interest of the material prior to synthesis can be extremely useful to prioritize available resources for simulations and experiments. Although composition-only based predictive models can be helpful for screening and identifying potential material candidates without the need for structure as an input, they are by design not capable of distinguishing between structure polymorphs of a given composition. Further, composition-only based models could potentially have substantial errors in the predicted values as compared to ground truth, as different structure polymorphs of a given composition can have drastically different properties. These shortcomings can be mitigated by incorporating structure-based inputs, and hence structure-based modeling presents bigger opportunities than composition-based modeling to advance the discovery process in the field of materials science. In this work, Vishu Gupta et al. from the Department of Electrical and Computer Engineering, Northwestern University, presented a framework for materials property prediction tasks that combines advanced data mining techniques with a structure-aware graph neural network (GNN) to improve the predictive performance of the model for materials properties with sparse data. They first applied a structure-aware GNN-based deep learning architecture to capture the underlying chemistry associated with the existing large data containing crystal structure information. The resulting knowledge learned was then transferred and used during training on the sparse dataset to develop reliable and accurate target models. The researchers evaluated the proposed framework in cross-property and cross-materials class scenarios using 115 datasets to find that transfer learning models outperform the models trained from scratch in 104 cases, i.e., ≈90%, with additional benefits in performance for extrapolation problems. The significant improvements gained by using the proposed framework are expected to be useful for materials science researchers to more gainfully utilize data mining techniques to help screen and identify potential material candidates more reliably and accurately for accelerating materials discovery.

编辑概述

结构感知图神经网络:加速材料属性预测

利用晶体结构准确预测材料性能在材料科学领域中发挥着关键的作用。在确定候选材料后,必须进行一系列实验或者大量的密度泛函理论计算。根据系统的复杂性,这可能需要耗费数小时、数天甚至数月。因此,在合成前准确预测所关注的材料属性,对择优分配模拟和实验资源非常有用。仅基于组分的预测模型有助于筛选并识别潜在的候选材料而无需结构输入,但它们无法区分给定组分的结构多态性。此外,由于给定组分的不同结构可能具有截然不同的特性,因而与真实特性相比,仅基于组分的模型在预测值上可能存在显著的误差。这些缺陷可以通过在训练数据集中包含基于结构的输入得到缓解。因此,与基于组分的模型相比,基于结构的模型为推进材料科学领域的发现过程提供了更大的可能性。在本工作中,来自美国西北大学电气与计算机工程系的Vishu Gupta等人,提出了一个材料属性预测任务框架。该框架将先进的数据挖掘技术与结构感知图神经网络相结合,以提高模型对具有稀疏数据的材料属性的预测性能。研究者首先使用基于结构感知图神经网络的深度学习架构,从现有的包含晶体结构信息的大数据中捕捉底层化学信息。学习得到的知识将被迁移到稀疏数据集上使用,以开发可靠和准确的目标模型。作者使用115个数据集对所提出的框架在跨属性和跨材料类别的场景下进行了评估,发现迁移学习模型在104种情形下(≈90%)优于从头开始训练的模型。此外,迁移学习模型在外推问题中具有额外的性能优势。使用该框架所带来的性能提升将有助于材料科学领域的研究人员更有价值地利用数据挖掘技术,帮助更加可靠、准确地筛选和识别潜在的候选材料,以加速材料发现。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050