首 页
滚动信息 更多 >>
本刊2022年SCI影响因子9.7 (2023年6月发布) (2023-10-23)
本刊2021年SCI影响因子12.256 (2022-07-07)
npj Computational Materials 2019年影响因子达到9... (2020-07-04)
npj Computational Materials获得第一个SCI影响因... (2018-09-07)
英文刊《npj Computational Materials(计算材料学... (2017-05-15)
快捷服务
最新文章 研究综述
过刊浏览 作者须知
期刊编辑 审稿须知
相关链接
· 在线投稿
会议信息
友情链接
  中国科学院上海硅酸盐研究所
  无机材料学报
  OQMD数据库
近期文章
Efficient first-principles electronic transport approach to complex band structure materials: the case of n-type Mg3Sb2
发布时间:2024-02-23

Efficient first-principles electronic transport approach to complex band structure materials: the case of n-type Mg3Sb2 

Zhen Li, Patrizio Graziosi & Neophytos Neophytou

npj Computational Materials 10: 9 (2024); Published online: 06 Jan 2024

Editorial Summary

First-principles electronic transport approach: Efficiency, robustness, and flexibility

Transport parameters are crucial for novel material deployment in a variety of technological applications, including solar cells, solid-state batteries, light-emitting diodes (LED), photocatalysis, thermoelectrics, and many more. One of the earliest and most common approaches is to calculate transport is solving the Boltzmann transport equation (BTE) in the constant relaxation time (CRT) approximation. DFT and DFPT have enabled calculations of electron–phonon interactions from the first principles. This procedure can be accelerated within the EPW code. However, this method is stillhighly resource-intensive for materials with larger unit cells (containing more atoms and basis functions) and lower symmetry (featuring larger non-equivalent k-space regions). Dr Zhen Li, Dr Patrizio Graziosi and Prof Neophytos Neophytou from School of Engineering, University of Warwick, UK, combined the DFPT + Wannier method with the deformation potential theory, offering an alternative direction to calculate transport properties which provides efficiency, robustness, and flexibility. Acoustic, optical, and inter-valley deformation potentials are calculated from e–ph matrix elements using first-principles calculations. Overall scattering rates is completed by computing polar optical-phonon and ionized impurity scattering rates. Using ElecTra, they validate the approach by performing an in-depth investigation for the promising TE material n-type Mg3Sb2, chosen for its band structure complexity, unit cell size, and degree of symmetry. Excellent agreement with the DFPT + Wannier method is achieved while utilizing no more than 10% of its computational cost. Applying the same approach to Si, a simpler material, once again that ab initio accuracy is attained, this time at less than 1% of the corresponding ab initio computational cost. This method belongs to the category of methods that compute and process matrix elements. However, it distinguishes itself through advancements in accuracy and flexibility. Firstly, accuracy is ensured by selectively computing crucial matrix elements at specific energies and wavevectors, focusing on regions responsible for electronic transitions. This allows to afford dense grids around these significant areas. Secondly, this approach provides explicit information on individual scattering processes (acoustic, optical, intra- and inter-valley), offering valuable insights and capabilities that are particularly advantageous for designing materials with optimal multi-valley electronic structures. This approach offers an alternative that combines efficiency, robustness, and flexibility beyond the commonly employed constant relaxation time approximation with the accuracy of fully first-principles calculations. 

编辑概述

第一性原理输运计算:天下武功,唯快不破

电子输运性质计算对于半导体材料至关重要,其中最广泛应用的是常数弛豫时间近似。基于密度泛函微扰理论,弛豫时间可以精确求解,但是计算速度较慢,难以应用在具有复杂能带结构的材料体系中。来自英国华威大学工程学院的李圳博士、Patrizio Graziosi博士和Neophytos Neophytou教授,提出了密度泛函微扰理论结合形变势理论的计算策略,研究了半导体的电子-声子耦合和输运性质,实现了与完全第一性原理计算方法一致的准确度。该研究基于电子-声子矩阵元推导声学、光学和谷间形变势,并考虑极性光学支声子和电离杂质散射,基于自主开发的开源玻尔兹曼输运软件ElecTra进行计算。以nMg3Sb2为例,阐述了如何应用在具有复杂能带结构的材料。与DFPT + Wannier方法相比,计算结果取得了极好的一致性,同时计算成本小于其10%。将同样的方法应用于Si,在准确度类似的情况下,计算成本小于其1%。除了实现快速计算外,该方法还提供了准确性和灵活性:1)通过在特定能量和波矢下选择性地计算关键矩阵元,在重要的电子散射区域提供密集网格;2)明确了各个散射过程(声学、光学、谷内和谷间),提供了能带工程中有关多谷结构的关键信息。与最先进的完全第一性原理方法相比,该计算策略同时实现了高效、准确、灵活的输运计算。

 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050